美国米顿罗(MiltonRoy)RA020液压隔膜计量泵,主要应用于:石化、化工、炼油工艺、电厂锅炉水处理。

美国米顿罗RA020系列液压隔膜计量泵

RA020液压隔膜泵

参数:

最大流量:19L/H

输出压力:24bar(2.4MPa)

电机功率:0.25KW

调节方式:手动,电动,调频控制

冲程次数:30次/分钟(SPM)

GB0080GB0080

液压隔膜泵常用型号:

RA020S024A1MNN RA020S024G1MNN RA020S024G1ANN
PVC备件包:SRPM007 SS316备件包:SRPM002 PVDF备件包:SRPM008

其他相关链接·泵阀知识·环保

液压泵轴承故障诊断神经网络法研究

  摘要:研究了基于集成BP网络的米顿罗RA020液压泵轴承故障诊断方法。利用频域和倒频域 进行特征提取,采用集成BP网络进行故障诊断和识别,解决了液压泵轴承故障特征提出困难 、多故障识别困难的问题。试验结果表明,利用集成BP网络可以有效地诊断与识别液压泵轴承多故障模式,并且具有很强的鲁棒性。

  关键词:液压泵;轴承故障;故障诊断;集成BP网络 

  在航空工业中,液压系统的工作性能直接影响着飞机的安全和旅客的生命,而液压泵是液压 系统的动力源,因此对液压泵的状态监控与故障诊断尤为重要。轴承故障是液压泵常见的故 障模式之一,由于轴承故障所引起的附加振动相对于液压泵的固有振动较弱,因而很难把故 障信息从信号中分离开来。到目前为止,对米顿罗RA020液压泵轴承故障的故障诊断尚缺少十分有效的方 法。本文提出在频域和倒频域进行特征提取,旨在解决轴承特征提取困难的问题并利用集成 BP网络解决多故障诊断与识别和鲁棒性问题。
1 液压泵轴承故障的特征提取

  对于机械系统而言,如有故障则一定会引起系统的附加振动。振动信号是动态信号,它包含 的信息丰富,很适合进行故障诊断。但是如果附加振动信号由于固有信号或外界干扰对故障 信号的干扰很大而淹没,那么如何从振动信号中提取有用信号就显得十分关键。

根据摩擦学理论,当轴承流动面的内环、外环滚道及滚柱上出现一处损伤,滚道的表面平滑 受到破坏,每当滚子滚过损伤点,都会产生一次振动。假设轴承零件为刚体,不考虑接触变 形的影响,滚子沿滚道为纯滚,则有如下损伤振动频率:
  当内滚道有一处损伤时,其振动脉冲特征频率为:fI=frZ(1+dcosα/D)/2  (1)

  当外滚道有一处损伤时,其振动脉冲频率为:fo=frZ(1-dcosα/D)/2  (2)

  当滚柱上有一处损伤时,其振动脉冲特征频率为:fR=frD(1-d2cosα/D2)/d  (3)

  其中:fr-内环转速频率;D-轴承的节圆直径;d-滚柱的直径;α- 接触角;Z-滚柱个数。
  为了克服轴承故障信号较弱且容易被米顿罗RA020液压泵固有振动淹没的困难,选用以下抗干扰能力较强 的特征作为故障诊断特征参数。
  Hilbert变换用于信号分析中求时域信号的包络,以达到对功率谱进行平滑从而突出故 障信息。定义信号:为最佳包络。倒谱包络模型实质是对从传感器获得的信号进行倒频谱分析,然后对其倒频谱信号进行包络提取,从而双重性地突出了故障信息,为信噪比小的故障特征的提取提供了依据。

2 集成BP网络进行故障诊断的原理

  神经网络的组织结构是由求解问题的领域特征决定的。由于故障诊断系统的复杂性,将神经网络应用于障诊断系统的设计中,将是大规模神经网络的组织和学习问题。为了减少工作的复杂性,减少网络的学习时间,本文将故障诊断知识集合分解为几个逻辑上独立的子集合,每个子集合再分解为若干规则子集,然后根据规则子集来组织网络。每 个规则子集是一个逻辑上独立的子网络的映射,规则子集间的联系,通过子网络的权系矩阵表示。各个子网络独立地运用BP学习算法分别进行学习训练。由于分解后的子网络比原来的网络规模小得多且问题局部化了,从而使训练时间大为减少。利用集成BP网络进行米顿罗RA020液压泵轴承故障诊断的信息处理能力源于神经元的非线性机理特性和BP算法。
3、神经网络鲁棒性的研究

  神经网络的鲁棒性是指神经网络对故障的容错能力。众所周知,人脑具有容错特性,大脑中个别神经元的损伤不会使它的总体性能发生严重的降级,这是因为大脑中每一概念并非只保存在一个神经元中 ,而是散布于许多神经元及其连接之中。大脑可以通过再次学习, 使因一部分神经元的损伤而淡忘的知识重新表达在剩余的神经元中。由于神经网络是对生物神经元网络的模拟,所以神经网络的最大特征是具有“联想记忆”功能,即神经网络可以由以往的知识组合,在部分信息丢失或部分信息不确定的条件下,用剩余的特征信息做出正确的诊断。表2给出了轴承6个特征信息中某些输入特征不正确或不确定情况下正确诊断和识别的成功率。

我们在你身边

我们歇力为您找到最适合的产品、资源和服务。

告诉我们您的需求

客服一:3280317584
有事可以QQ交谈

客服二:2113522900
有事可以QQ交谈

客服三:173984897
有事可以QQ交谈

客服邮箱:

13826157744